Ohne Flüssigkeiten und Gase würde es auf der Erde kein Leben geben. Die Dynamik von Fluiden bestimmt den Wärmehaushalt der Erde oder erzeugt deren Magnetfeld, im Körper halten uns die Lunge und das Herz am Leben. Wasser, Gase und Öle werden in Pipelines und Rohren transportiert. Die Effizienz der Verbrennung wie beispielsweise im Automotor oder auch die Herstellung von Chemikalien in großtechnischen chemischen Reaktionsanlagen hängt maßgeblich von der Dynamik der Gase und Flüssigkeiten ab.
„Dieses sind nur sehr wenige Beispiele, die zeigen: Fluiddynamik bestimmt die Welt und das Universum. Und da diese Feldtheorie bis heute im Detail mathematisch noch unverstanden ist und auch Reaktionen oder Wechselwirkung von Fluiden mit Oberflächen tiefe Fragen aufwerfen, ist es unbedingt an der Zeit, dass sich die Physik mit den Grundlagen dieses Gebiets stark auseinandersetzt“, sagt Eberhard Bodenschatz, Direktor am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen (MPIDS). Er hat dieses erste niederländische Max Planck Center gemeinsam mit Detlef Lohse, Institutsleiter an der Universität Twente (UT), initiiert. Vonseiten der UT sind die Forschungsgruppen Physik der Fluide und BIOS Lab-on-a-Chip federführend, neben dem MPIDS sind von der Max-Planck-Gesellschaft zudem Wissenschaftler vom Max-Planck-Institut für Polymerforschung in Mainz (MPIP) beteiligt.
International führend
Der Präsident der Max-Planck Gesellschaft, Martin Stratmann, sieht durch die neue Kooperation das Wissenschaftsfeld der komplexen Fluide im europäischen wie internationalen Maßstab deutlich gestärkt. „In dem neuen Max Planck Center vereinen und ergänzen sich drei führende Standorte in der Erforschung des komplexen Verhaltens von Flüssigkeiten. Indem die Forschung ihre Kräfte hier bündelt, werden Fortschritte in so unterschiedlichen Gebieten wie der pharmazeutischen Diagnostik oder der Klimamodellierung möglich.“
Victor van der Chijs, Präsident der Universität Twente, ergänzt: „Die Max-Planck-Institute sind Weltklasse. In dem neuen Center können wir gemeinsam Spitzenforschung betreiben. Zudem erbringt die erste Ansiedlung eines Max Planck Centers in den Niederlanden Forschung mit hohem Wirkungsgrad - von den Grundlagen bis hin zur Anwendung.“
Detlef Lohse, der als Leiter der Abteilung „Physics of Fluids“ an der Universität Twente einer der zwei Co-Direktoren des Centers ist, unterstreicht die Bedeutung für die Nachwuchsförderung: „Neben der wissenschaftlichen Zusammenarbeit und der gemeinsame Nutzung von Forschungsinfrastruktur geht es uns auch insbesondere um die Förderung hochtalentierter junger Wissenschaftler. So wird es eine gemeinsame Ausbildung von hochqualifizierten Doktorandinnen und Doktoranden geben. Wir bieten einen Magneten für Toptalente.“
Synergien in der Infrastruktur
Der Göttinger Max-Planck-Wissenschaftler Eberhard Bodenschatz, ebenso Co-Direktor, sieht als weiteren zentralen Vorteil die gemeinsame Nutzung von Großgeräten. „Zusammen besitzen wir eine weltweit einzigartige Infrastruktur zur Untersuchung der Fluid-Physik. Diese können wir auf größtmöglich unterschiedlichen Skalen beobachten, also von einzelnen Flüssigkeitsbläschen im Nanobereich bis hin zu großskaliger Turbulenz, wie sie in der Natur in der Atmosphäre oder im Erdinneren vorkommt“, so Bodenschatz. Beispielsweise können die Fluidforscher mit dem Taylor-Couette-System in Twente die turbulente Strömung zwischen zwei konzentrischen, schnell rotierenden Zylindern erforschen. Eine in Göttingen etablierte Infrastruktur, die wegen ihrer Form „U-Boot“ genannt wird, dient dagegen der Untersuchung hochturbulentem Wärmetransport zwischen einer warmen Boden- und einer kalten Deckenplatte. Mit dem Hochdruckwindkanal, der ebenfalls in Göttingen steht, werden Transporteigenschaften des turbulenten Windes und der Einfluss der Turbulenz auf Windkraftanlagen untersucht.
Vielfalt der Anwendungsfelder
Auch auf dem Gebiet der Mikro- und Nanofluide hat das neue Max Planck Center eine hohe Expertise. So fragt eine Gruppe von Hans-Jürgen Butt, Direktor am MPIP, wie sich die Ausbreitung von Flüssigkeiten durch die Nanostrukturierung einer Oberfläche steuern lässt. Mit dieser Forschung wollen die Wissenschaftler Biofilme oder selbstreinigende Oberflächen herstellen oder die Vereisung eines Materials verhindern. Die Gruppe um Katharina Landfester, Direktorin am Mainzer MPIP, wiederum geht den umgekehrten Weg: Sie untersucht, wie sich durch Flüssigkeiten mit strukturierten Nanopartikeln die Fluiddynamik beeinflussen lässt. Dadurch können zum Beispiel biologische Materialien zielgenau auf Oberflächen positioniert werden. Ebenso ermöglicht die Kooperation der drei Partner einen tieferen Einblick in biologische Prozesse mittels eines in Twente entwickelten Lab-on-a-Chip, einem winzigen Labor auf einer Platine, mit dem man zukünftig geringste Mengen einer Flüssigkeit wie beispielsweise Blut vor Ort analysieren kann.
16 Max Planck Center weltweit
Die Max-Planck-Gesellschaft betreibt an ihren 83 Instituten und Einrichtungen Grundlagenforschung in den Natur-, Lebens- und Geisteswissenschaften. Seit ihrer Gründung 1948 sind 18 Nobelpreisträger aus ihren Reihen hervorgegangen. Neben fünf Instituten im Ausland gibt es nun 16 Max Planck Center weltweit. In Europa sind es acht Center, unter anderem mit der ETH in Zürich, der EPFL in Lausanne oder dem University College London. In das Max Planck Center in Twente investiert jeder der Partner rund eine Million Euro pro Jahr. Dazu steuern die Niederländische Foundation for Fundamental Research on Matter und die Niederländische Organisation für Wissenschaftliche Forschung (NWO) für die kommenden fünf Jahre eine Million Euro bei. Die Laufzeit des Centers beträgt vorerst fünf Jahre.