In der Fachzeitschrift Nature Communications beschreiben die Forscher gemeinsam mit Kollegen von der Rutgers State University of New Jersey, USA , aus Frankreich, von DESY, Hamburg, und von European XFEL die Untersuchung der dreidimensionalen Struktur von Proteinmolekülen im Strahl des Röntgenlasers.
Dabei konnten sie erstmals zeigen, dass unter den Messbedingungen des Experiments Daten hoher Qualität mit sehr kurz aufeinanderfolgenden Pulsen gesammelt werden können. Das verkürzt die Messzeit deutlich. Die genaue Strukturbestimmung von Biomolekülen ist von großer Bedeutung, weil sich daraus unter anderem wichtige Hinweise zur Entstehung und Behandlung von Krankheiten ergeben können.
Der Röntgenlaser kann bis zu 27.000 Blitze pro Sekunde erzeugen. Die Blitze kommen in Pulsfolgen von zehn Paketen pro Sekunde, die von vergleichsweise langen Pausen ohne Blitze unterbrochen sind. Würde eine Pulsfolge eine ganze Sekunde andauern, würde sie mehr als 1,1 Millionen Pulse liefern – Fachleute sprechen von einer Pulsrate von 1,1 Megahertz. Mit der heutigen Veröffentlichung wurde erstmals an Röntgenlasern eine solche Pulsrate erreicht und für Experimente genutzt. Kein anderer Röntgenlaser weltweit kann eine solche Rate erreichen.
Derzeit gibt es weltweit nur fünf Röntgenlaser, die kurzwelliges, hartes Röntgenlicht erzeugen. Die Messzeiten sind daher stark gefragt und die Anlagen in der Regel mehrfach überbucht. Verkürzte Experimentierzeiten durch eine hohe Zahl von Röntgenlichtblitzen wie in der Publikation der Forscher beschrieben ermöglichen eine größere Zahl von Forschungsvorhaben und eröffnen einer größeren Anzahl von Wissenschaftlern Zugang zu den hellsten Röntgenlichtquellen der Welt.
Zum Nachlesen
- Publikation in Nature Communications: Megahertz data collection from protein microcrystals at an X-ray free-electron laser