Grüner Wasserstoff hat in zukünftigen Energiesystemen eine Schlüsselfunktion bei der Dekarbonisierung und der Kopplung aller Sektoren. Die Europäische Union hat sich daher das Ziel gesetzt, bis 2030 in den eigenen Mitgliedsländern zehn Millionen Tonnen grünen Wasserstoff zu produzieren und weitere zehn Millionen Tonnen zu importieren. Dies kann nur gelingen, wenn dafür effiziente, zuverlässige und wettbewerbsfähige Technologien zur Verfügung stehen.
Besonders geeignet zur Produktion von grünem Wasserstoff im großen Maßstab sind Elektrolyseanlagen, deren Funktionsweise auf der Protonen-Austausch-Membran (PEM) basiert. Diese PEM-Elektrolyseanlagen werden bereits im Megawatt-Maßstab kommerziell eingesetzt. Sie bieten schnelle Reaktionszeiten und können sehr flexibel betrieben werden. Dadurch kann die stark fluktuierende Stromerzeugung aus nachhaltigen Energiequellen wie Sonne oder Wind direkt mit PEM-Elektrolyseanlagen gekoppelt werden. Diese große Dynamik kann jedoch dazu führen, dass die zu Stacks zusammengefassten Elektrolysezellen vorzeitig altern. Infolgedessen verringern sich auch die Lebensdauer und die Leistung der Anlage insgesamt. Bisher ist es nicht möglich, diese Prozesse im industriellen Maßstab abhängig von der Betriebsweise vorherzusagen: Die an der Elektrolyse beteiligten Vorgänge sind komplex und die Langzeit-Betriebserfahrungen gering.
Genau hier setzt das vom BMBF geförderte deutsch-kanadische Verbundprojekt "Modellentwicklung zur Steigerung der Effizienz von Elektrolyseanlagen" (kurz: "Hyer") an. Gemeinsam wollen die Forschungspartner ein digitales techno-ökonomisches Modell einer PEM-Elektrolyseanlage entwickeln, die mit erneuerbaren Energiesystemen gekoppelt ist und sich durch eine dynamische Betriebsweise auszeichnet. In Verbindung mit Hard- und Softwareanwendungen wird dieses Modell es ermöglichen, Alterungsvorgänge und die Verringerung der Leistungsfähigkeit mit hoher Genauigkeit vorherzusagen. Dadurch können Betriebsstrategien unter Berücksichtigung der Lebensdauer optimiert werden. Das angestrebte Modell wird dazu auch den digitalen Zwilling eines Stacks umfassen, der die nachteiligen Folgen einer dynamischen Betriebsweise für die Elektrolysezellen präzise abbildet.
An der Entwicklung des digitalen Zwillings werden Forschende des Institute for Integrated Energy Systems an der University of Victoria und des National Research Council Canada (NRC) mit Methoden der künstlichen Intelligenz und des maschinellen Lernens arbeiten. Die zur Modellierung notwendigen experimentellen Daten werden vom Hydrogen Research Institute der Université du Québec à Trois-Rivières bereitgestellt, das in Zusammenarbeit mit dem NRC neuartige Stacks herstellt, analysiert und charakterisiert. Diese Stacks werden in einem speziell für das Projekt "Hyer" entwickelten Prüfstand bei der SEGULA Technologies GmbH in Rüsselsheim getestet und beschleunigt gealtert. Für die elektrochemische Charakterisierung der Stacks wird das in Toronto ansässige Start-up Pulsenics Inc. die erforderlichen technischen Lösungen liefern.
Unter der der Leitung von Prof. Dr.-Ing. Dieter Brüggemann, Direktor des ZET, übernimmt das Bayreuther Team die techno-ökonomische Simulation und Optimierung der PEM-Elektrolyseanlage. Matthias Welzl, der als Koordinator für Wasserstoffforschung und -technologien das Projekt am ZET wesentlich vorbereitet hat, übernimmt die Koordination der deutschen Projektpartner. Mariam Awara ist COO und Mitgründerin des kanadischen Start-up Pulsenics Inc., dessen elektrochemisches Monitoring- und Regelungssystem Grundlage für die Umsetzung des Projekts ist. Für die erfolgreiche Gründung von Pulsenics Inc. wurde sie 2022 in der Kategorie "Manufacturing & Industry" auf der "Forbes 30 Under 30" Liste ausgezeichnet. Stephan Wagner wird als Projektingenieur und Experte für Wasserstofftechnologien die Arbeiten bei der SEGULA Technologies GmbH leiten.